
INFO - 698
Capstone Project

Dr Greg Chism, Dr Enrique Noriega

PubMed Agentic
Retrieval-Augmented Generation

Project Final Report

By

Syed Junaid Hussain, Dhawal Gajwe, Abhishek Kumar, Abhay

Kumara Sri Krishna Nandiraju
​ ​ ​

PubMed Agentic Retrieval-Augmented Generation

Abstract. The rapid growth of medical research publications necessitates efficient systems for retrieving and
synthesizing information. This project addresses this need by developing a Retrieval-Augmented Generation
(RAG) agent for PubMed research papers. The system processes 10,000 NXML files, extracting key metadata
such as PMID, authors, journal, title, and text.The extracted data is chunked and transformed into embeddings
using the S-PubMed BERT-MS-MARCO embedding generator, which are stored in a Weaviate vector database
for fast retrieval. A JS2 instance optimizes the processes of chunking, embedding generation, and database
uploads. Using LangChain, the RAG agent integrates the vector database with a large language model (LLM) to
generate contextually relevant responses. Deployed as a chatbot via Streamlit, it provides an intuitive interface for
querying medical research. This report details the system architecture, design choices, challenges, and
performance comparisons, showcasing the potential of RAG agents in advancing medical information retrieval.

Introduction

The vast and ever-growing volume of medical research publications presents a significant challenge for
researchers, clinicians, and other stakeholders in efficiently accessing and synthesizing relevant information.
PubMed alone hosts millions of research papers, with thousands added daily, covering a wide range of medical
topics. While this wealth of information is invaluable, the lack of efficient tools to retrieve and synthesize relevant
knowledge poses a significant barrier to its practical application. Traditional methods of information retrieval are no
longer sufficient to meet the demands of modern research workflows, especially in critical fields like medicine
where timely and accurate information is essential.

This project aims to address these challenges by developing a Retrieval-Augmented Generation (RAG) agent
specifically designed for research papers from PubMed. The primary objective is to create a system that can process,
store, and retrieve information from a large corpus of medical research papers, enabling users to query the system
and receive accurate, contextually relevant responses. The system processes approximately 10,000 NXML files,
extracting key metadata such as PMID, authors, journal, title, and text. These extracted chunks are then transformed
into embeddings using the S-PubMedBERT-MS-MARCO embedding generator, which are stored in a Weaviate
vector database for efficient retrieval.

In the context of modern AI research, this project aligns with the industry's focus on Retrieval-Augmented
Generation systems, which combine the power of large language models (LLMs) with efficient retrieval
mechanisms. By leveraging state-of-the-art technologies such as S-PubMedBERT-MS-MARCO for embedding
generation, Weaviate for vector storage, and LangChain for LLM integration, this project demonstrates the practical
application of cutting-edge AI techniques in a domain as critical as medicine. The use of RAG agents is particularly
relevant in AI research today, as they address the limitations of standalone LLMs by grounding their responses in
factual, retrievable data, ensuring accuracy and reliability.

To enable intelligent responses, the RAG agent integrates the vector database with a large language model (LLM)
using LangChain. The system is deployed as an interactive chatbot via Streamlit, providing an intuitive interface for
users to explore the repository of medical research. This approach not only enhances the accessibility of medical
knowledge but also demonstrates the potential of RAG agents in revolutionizing information retrieval in specialized
domains.

This project has the potential to significantly impact the medical field by empowering researchers and clinicians
with tools to access and apply knowledge more effectively. For researchers, it provides a streamlined way to explore
vast repositories of medical literature, accelerating the pace of discovery and innovation. For clinicians, the system
offers a means to retrieve accurate, evidence-based information in real time, enhancing their reasoning capacity and
decision-making when dealing with live patients. By integrating advanced AI technologies with medical research,
this project not only advances the state of information retrieval but also contributes to improving patient care and
outcomes in real-world medical settings.

This report provides a comprehensive overview of the system architecture, design choices, challenges encountered,
and mitigation strategies. It also includes a detailed analysis of the data and performance comparisons between
Llama 3.2 and GPT-4o, highlighting the strengths and limitations of the system.

System Architecture

Data Preprocessing

The data preprocessing pipeline illustrated in the above diagram consists of three sequential stages. Initially,
PubMed XML Files serve as the primary data source, containing structured biomedical literature and research
information. These XML files are then parsed and chunked to systematically extract, transform and segment into
appropriate units for efficient processing. Finally, the processed data is stored in a Weaviate database, a vector
database optimized for semantic search and AI applications, enabling effective retrieval and utilization of the
biomedical information. This streamlined workflow ensures that raw scientific literature is converted into a format
suitable for advanced analysis and knowledge extraction.

Figure 1: RAG workflow integrating a ReAct Agent for dynamic reasoning, retrieval, and generation of
context-rich answers.

RAG Workflow
The RAG (Retrieval-Augmented Generation) workflow diagram introduces an enhanced system that enables

more dynamic information processing through reasoning and decision-making steps. The process is initiated when
users send queries via the Streamlit UI Chatbot (blue box). These queries are received by the ReAct Agent (red box),
which orchestrates the flow by performing Reasoning, selecting appropriate Actions, and observing Outcomes
throughout the retrieval and generation phases.

The ReAct Agent determines whether information needs to be retrieved and interacts with the central Retriever
(orange box). The Retriever aggregates information from two specialized retrieval sources — the PubMed Retriever
and the Wikipedia Retriever (both shown as orange boxes at the bottom) — each accessing domain-specific datasets.
Retrieved content is then either reasoned upon further or passed to the Large Language Model (red box), which
processes and synthesizes the information into a coherent output.

Finally, the ReAct Agent delivers a Summarized Answer (green box) to the user. This updated architecture
empowers the system to generate more context-aware, thorough, and dynamically reasoned responses by integrating
information from both medical literature and general knowledge bases.

Design Choices/Tech Stack

This RAG application was developed using the ReAct framework, Langchain, Streamlit, Weaviate, GPT-4o,
Llama-3.2 and deployed on Jetstream 2. The detailed reasons for picking the following tools and frameworks is
discussed below:

ReAct Framework

The ReAct (Reasoning + Action) framework[1] represents a significant advancement in the development of
interactive AI systems. This architecture integrates reasoning and decision-making capabilities with action execution
and observation processing to create more effective agent-based solutions. The ReAct framework functions through
a recursive cycle of three core components:

Reasoning: The agent analyzes the current situation, including the user's query and available context. It formulates a
plan of action based on its understanding of the task and available tools. This step involves critical thinking,
decomposition of complex queries, and prioritization of information needs.
Action: Based on its reasoning, the agent executes specific actions using available tools. These actions might
include retrieving information from databases, querying external APIs, or processing data. In our implementation,
these actions primarily involve querying specialized retrievers for relevant medical information.
Observation: After performing an action, the agent observes and processes the results. It evaluates the information
obtained, determines its relevance and quality, and decides whether additional actions are needed or if sufficient
information has been gathered to formulate a response.

This recursive cycle continues until the agent determines it has sufficient information to provide a comprehensive
answer to the user's query. The strength of the ReAct framework lies in its ability to decompose complex queries
into manageable sub-tasks, maintaining a chain of thought that leads to more accurate and contextually relevant
responses.

LangChain ReAct Framework Implementation

In our PubMed RAG system, we implemented the ReAct framework using LangChain[2], a comprehensive
library designed to develop applications powered by language models. LangChain's implementation of ReAct
provides a structured approach to creating agents that can reason about user queries and leverage external tools to
retrieve and process information.
The LangChain ReAct framework allows our system to:

Process natural language queries: Convert user input into a structured format that can guide information retrieval.
Plan a sequence of actions: Determine which tools to use and in what order based on the query's requirements.

Execute actions through tool integration: Access specialized retrievers and process their results.
Maintain contextual awareness: Track the state of the conversation and previously retrieved information.
Generate coherent responses: Synthesize information from multiple sources into a comprehensive answer.

Our implementation integrates two primary retrieval tools:

PubMed Retriever: This specialized tool conducts semantic searches within our Weaviate vector database
containing embeddings of medical research papers. It retrieves the most relevant chunks of information based on
semantic similarity to the query, ensuring that responses are grounded in peer-reviewed medical literature.
Wikipedia Retriever: This tool supplements the medical literature with general knowledge from Wikipedia,
providing broader context when necessary. This is particularly useful for queries that benefit from background
information not typically found in specialized research papers.
The LangChain ReAct agent coordinates between these retrievers, deciding which to query based on the nature of
the user's question. It can also choose to use both retrievers in sequence, combining specialized medical knowledge
with general contextual information to provide more comprehensive responses.

Weaviate

Weaviate is an open-source vector database designed to store, manage, and retrieve high-dimensional vector
embeddings efficiently[3]. It is purpose-built for applications involving machine learning and artificial intelligence,
where embeddings generated from text, images, or other data types need to be stored and queried for
similarity-based retrieval. Weaviate supports advanced features such as hybrid search (combining vector and
keyword search), real-time updates, and scalability, making it an ideal choice for projects requiring fast and accurate
information retrieval.

In this project, Weaviate was chosen as the vector database to store the embeddings generated from the research
paper chunks using the S-PubMedBERT-MS-MARCO embedding generator. Its ability to handle large-scale
datasets, combined with its optimized vector search capabilities, ensures that the system can retrieve relevant
embeddings quickly and accurately. Weaviate’s support for approximate nearest neighbor (ANN) search algorithms,
such as HNSW (Hierarchical Navigable Small World), significantly enhances the speed and efficiency of
similarity-based queries, which is critical for real-time applications like the RAG agent.

Additionally, Weaviate’s schema flexibility and integration capabilities with modern AI frameworks, such as
LangChain, make it a seamless fit for this project. By storing embeddings in Weaviate, the system can efficiently
retrieve the most relevant chunks of information based on user queries, enabling the large language model (LLM) to
generate accurate and contextually relevant responses. This streamlined retrieval process not only improves the
performance of the RAG agent but also ensures scalability and reliability, making Weaviate a cornerstone of the
system’s architecture.

LLMs

For our PubMed RAG system, we experimented with two leading large language models to determine which
would provide the best performance for medical information retrieval and synthesis:

Llama 3.2 11B Vision Instruct
Llama 3.2 11B Vision Instruct[4] was initially considered as an open-source alternative for our system. Its
advantages included:

●​ Open-source nature: Providing greater flexibility for customization and deployment
●​ Local deployment capabilities: Reducing dependency on external API services
●​ Multimodal capabilities: Offering potential for future expansion to incorporate medical imaging

However, our testing revealed several limitations:

●​ Inconsistent response quality: The model often struggled to provide concise, focused answers to medical
queries

●​ Inefficient reasoning process: Even when maxing out the iteration limit (25 iterations in LangChain's
ReAct implementation), the model frequently failed to converge on accurate answers

●​ Source grounding issues: We observed that responses tended to be disproportionately grounded in
Wikipedia information rather than the more authoritative PubMed sources

●​ Citation problems: The model rarely provided proper citations to the source material, reducing the
traceability and credibility of the information

●​ Resource intensity: The model's inefficient reasoning process led to higher computational demands and
longer response times

GPT-4o
After identifying the limitations of Llama 3.2, we transitioned to testing GPT-4o[5], which demonstrated significant
improvements:

●​ Superior response quality: Generated more accurate, concise, and contextually relevant answers to
medical queries

●​ Efficient reasoning process: Typically resolved queries in 1-3 iterations, dramatically reducing
computational overhead

●​ Balanced source utilization: Appropriately prioritize information from PubMed when answering
specialized medical questions

●​ Consistent citation practices: Regularly included citations to source materials, enhancing the credibility
and traceability of information

●​ Optimal token utilization: More efficiently managed the available context window, allowing for more
complex queries

While GPT-4o requires API access and has associated costs, the substantial improvements in response quality,
reasoning efficiency, and appropriate source utilization justified its selection as the primary LLM for our production
system.

Jetstream 2(JS2)

Jetstream 2 is an accessible cloud computing infrastructure for research and education communities. Jetstream 2
was used in this project since it provides on-demand, user-friendly computing resources specifically designed to
support a wide range of compute intensive tasks. In our implementation, Jetstream 2[6] instances serve as the robust
hosting environment for our Streamlit-based RAG application, offering the computational power and scalability
necessary for processing biomedical literature queries efficiently. In addition to this, the GPUs provided helped us in
speeding up the process of vector embedding creation of the XML files that were later stored in the Weaviate vector
database. The platform's virtual machines provided us with flexible and configurable resources that can be tweaked
to specific workload requirements, eliminating the need for specialized hardware investments. Jetstream 2's
integration with the ACCESS program (Advanced Computing Coordination Ecosystem: Services & Support) helped
us leverage high-performance computing capabilities such as CPU, GPU and data volumes using a simple interface.
Additionally, Jetstream 2's focus on reproducibility and collaboration aligns perfectly with our software needs,
enabling us to share environments, methodologies, and results seamlessly while maintaining the performance and
rapid application deployment.

Streamlit

Streamlit was used in this project since it is a powerful open-source Python framework designed specifically for
creating and deploying data applications with minimal effort[7]. Its intuitive API allows developers to transform
data scripts into shareable web applications using pure Python, eliminating the need for front-end development
expertise. In our biomedical RAG implementation, Streamlit provides an ideal interface solution by enabling rapid
development of an interactive chatbot that connects users directly with complex retrieval-augmented generation
capabilities. The framework's widget system seamlessly handles user queries through text inputs, while its flexible
display options effectively present the retrieved biomedical information and generated responses in a clean,
organized format. Streamlit's stateful nature maintains conversation context throughout user sessions, essential for
meaningful dialogue with our LLM-powered system. Additionally, its built-in caching mechanisms optimize
performance when processing repeated biomedical queries, reducing computational overhead. In addition to this,
Streamlit's lightweight deployment requirements align perfectly with Jetstream 2's infrastructure, creating an
efficient, accessible platform for researchers to interact with complex biomedical literature through natural language
queries without navigating complicated interfaces. In this project, the Streamlit application has a dropdown to select

between gpt-4o and Llama-3.2 model, a user input field to enter questions and an indicator showing the status of the
RAG application.

Challenges and Mitigation Strategies

Throughout the development of our PubMed RAG system, we encountered several significant challenges that
required innovative solutions:

Challenge 1: Recursion Limits and Token Constraints

Problem: When using Llama 3.2 Vision Instruct, we frequently encountered issues with the model reaching
the maximum recursion limit (25 iterations) set by LangChain's ReAct implementation. Even after exhausting
all available iterations, the model often failed to produce satisfactory answers. This not only led to poor
response quality but also increased computational costs and response times.

Mitigation: We discovered that modifying the system prompt with specific instructions about iteration usage
yielded surprising improvements. By explicitly instructing the model to limit itself to 5-10 iterations and
focus on generating concise answers, we observed more efficient reasoning patterns. This approach reduced
unnecessary thinking loops and encouraged the model to converge on answers more quickly. However, this
optimization was ultimately insufficient to overcome the fundamental limitations of Llama 3.2 for our
specific use case.

Challenge 2: Model Performance and Source Fidelity

Problem: Our evaluation of Llama 3.2 Vision Instruct revealed several critical limitations for medical information
retrieval. The model consistently prioritized general knowledge from Wikipedia over the specialized medical
information from PubMed, significantly reducing the value of our curated research database. Furthermore, responses
lacked the precision and specificity required for medical queries, often providing overly generalized information
when detailed clinical insights were needed. The absence of proper citations to source materials undermined the
credibility of the information provided, a critical issue in medical contexts where verifiability is essential. From a
performance perspective, response generation required excessive iterations, sometimes using the entire allowed
recursion limit without producing satisfactory answers, which substantially increased latency and computational
costs. Perhaps most concerning for a medical information system, we observed occasional hallucinations when
addressing topics where knowledge gaps existed, creating potential risks for users relying on this information.

Mitigation: After comprehensive testing across multiple medical query types, we transitioned to GPT-4o, which
demonstrated transformative improvements in system performance. The model appropriately prioritized information
from PubMed research papers when answering specialized medical queries, effectively leveraging our vector
database of peer-reviewed literature. Its responses demonstrated consistently higher accuracy and relevance,
addressing the specific nuances of complex medical questions rather than providing generic information. GPT-4o
regularly included citations to specific papers, enhancing the traceability and credibility of the information provided.
From an efficiency standpoint, the model typically resolved queries in a single iteration, dramatically reducing
response times and computational overhead compared to Llama 3.2. Perhaps most importantly for a medical
information system, GPT-4o demonstrated better awareness of knowledge boundaries, reducing the risk of
hallucination and clearly indicating uncertainty when appropriate. While this solution increased our API costs, the
substantial improvements in response quality and system efficiency fully justified the investment for a system
handling potentially critical medical information.

Challenge 3: Streaming and Response Formatting

Problem: The raw output from LangChain's ReAct agent presents significant usability challenges for end
users. The default format includes the entire reasoning trace (Agent > Tool > Observation cycles), creating a
cluttered and confusing user experience. This technical format exposes the internal dialogue of the agent as it

reasons through problems, which, while valuable for debugging and development, overwhelms users with
implementation details rather than focusing on the requested information. Medical professionals and
researchers expect concise, well-structured responses that clearly communicate findings and their sources, not
a verbose transcript of an AI system's thought process.

Mitigation: We addressed this challenge by developing a custom response parser that transforms the raw
ReAct output into a user-friendly format optimized for medical information retrieval. Our solution extracts
the final synthesized answer from the agent's reasoning trace while also identifying and highlighting the
specific tools used and queries executed. This maintains transparency about the information sources without
overwhelming the user with technical details. The parser formats research findings in a clean, readable
structure and preserves citations while integrating them naturally into the response, enhancing the scholarly
value of the system. Additionally, we implemented a progressive, streaming format that provides immediate
feedback as information is processed, creating a more responsive user experience that acknowledges the
time-sensitive nature of many medical queries.

This custom formatting layer significantly improved user satisfaction by hiding the technical complexity of
the ReAct framework while preserving the value of its multi-step reasoning process. Users now receive
clearly structured responses that highlight key findings from medical literature while maintaining full
transparency about information sources. By delivering a streamlined, intuitive interface that meets the
expectations of medical professionals and researchers, our system bridges the gap between sophisticated AI
reasoning techniques and practical clinical information needs.

Dataset

Our PubMed Agentic Retrieval-Augmented Generation system processed a substantial corpus of biomedical
literature. The key dataset metrics include:

Metric

Value

Number of papers 18,015 NXML files from PubMed Central

Average Length in Tokens Approximately 4,571 tokens per paper

Number of Chunks

235,161 text segments across all documents

Average Chunks per Document

13.1 chunks per paper

The preprocessing pipeline consisted of multiple steps including XML document intake using lxml, metadata

extraction through XPath queries, and semantic text chunking with a target size of 300-400 tokens and 10-20%
overlap. This chunking strategy was specifically designed to balance context preservation with retrieval precision.

Each chunk maintains comprehensive metadata extracted from the original articles, including:

●​ PubMed ID (PMID)
●​ Article title
●​ Journal name
●​ Publication date
●​ Author information
●​ Section information (e.g., Abstract, Results, Discussion)
●​ MeSH terms (Medical Subject Headings)

For vector representations, we utilized PubMedBERT (pritamdeka/S-PubMedBERT-MS-MARCO), a model
specifically pre-trained on biomedical literature, which captures domain-specific semantic relationships and medical
terminology with high fidelity. This specialized model significantly outperforms general-purpose models on
biomedical retrieval tasks.

All chunks and their associated metadata were indexed in Weaviate, enabling semantic search across the entire
corpus of biomedical literature.

Examples

Screenshots

Figure 2: PubMed RAG Chatbot using Llama 3.2 Vision Instruct as the underlying LLM. Despite utilizing 5
iterations of the ReAct framework, the system struggles to formulate a coherent response. The output lacks
clarity and proper grounding in PubMed research, illustrating the limitations of Llama 3.2 for specialized
medical information retrieval tasks.

Figure 3: PubMed RAG Chatbot using GPT-4o as the underlying LLM. The system efficiently resolves
the medical query in a single iteration, providing a concise response grounded in PubMed literature
with proper PMID citations. This demonstrates GPT-4o's superior capability in medical information
retrieval and synthesis.

Cherry Picked Examples:

1.​ Can you summarize the findings of PubMed ID 37630643? (Or any other PMID)

2.​ What are the common risk factors for cardiovascular diseases and tell me what articles with IDs talk
about these ?

Conclusion:

The PubMed Agentic Retrieval-Augmented Generation (RAG) project represents a significant advancement
in the field of medical information retrieval and synthesis. By leveraging state-of-the-art technologies such as
large language models (LLMs), vector databases, and the ReAct framework, the system provides a robust
solution to the challenges posed by the ever-growing volume of medical research publications.

By integrating tools such as LangChain, Weaviate, and GPT-4o, the system provides an efficient and accurate
platform for querying biomedical literature. The project processed over 18,000 PubMed NXML files,
transforming them into a structured and searchable format, enabling researchers and clinicians to access
contextually relevant and evidence-based information with ease. The use of specialized embeddings, such as
S-PubMed BERT-MS-MARCO, ensured high fidelity in retrieval tasks, while the deployment of the system
as a Streamlit-based chatbot offered an intuitive interface for end-users. This project not only addresses the
challenges of navigating vast repositories of medical research but also enhances the accessibility and usability
of critical medical knowledge. The project has practical implications for a wide range of use cases. For
medical researchers, it offers a streamlined way to explore vast repositories of biomedical literature,
accelerating the pace of discovery and innovation. For clinicians, the system provides real-time access to
accurate, evidence-based information, enhancing their decision-making capabilities and improving patient
care outcomes. Additionally, the system's ability to generate contextually relevant and well-cited responses
ensures that it can serve as a reliable tool for knowledge dissemination in academic and clinical settings. By
integrating advanced AI technologies with medical research, this project not only addresses the limitations of
traditional information retrieval methods but also sets a new benchmark for the application of AI in
specialized domains like medicine.

Future Scope:

While the PubMed RAG project has demonstrated remarkable capabilities, there are several avenues for future
improvement and expansion to create a more efficient and world-class system:​
 1. Multimodal Capabilities: Incorporating the ability to process and analyze images, diagrams, and other
non-textual data would significantly enhance the system's utility, particularly for medical imaging and graphical
abstracts.​
 2. Scaling the Database: Expanding the database to include a larger corpus of medical literature and integrating
additional sources such as clinical trial data, guidelines, and patient records would improve the comprehensiveness
of the system.​
 3. Enhancing Retrieval Speed: Optimizing the retrieval algorithms and leveraging more efficient indexing
techniques can reduce latency, ensuring real-time responses even for complex queries.​
 4. Integration of Advanced AI Models: Incorporating cutting-edge AI models with improved reasoning and
contextual understanding capabilities can further enhance the accuracy and relevance of the system's responses.​
 5. User-Centric Features: Developing a more intuitive and customizable user interface, along with features like
personalized recommendations and query history, can improve user experience and engagement.​
 6. Cross-Domain Applications: Adapting the system for use in other specialized domains, such as legal research or
engineering, can broaden its applicability and impact.

​
 By addressing these areas, the PubMed RAG system can evolve into a more versatile, efficient, and impactful tool,
setting new standards for AI-driven information retrieval and synthesis in the medical field and beyond.

References:

1.​ S. Yao et al., “REACT: Synergizing reasoning and acting in language models,” arXiv (Cornell University),
Jan. 2022, doi: 10.48550/arxiv.2210.03629.

2.​ “Introduction | 🔗️ LangChain.” https://python.langchain.com/docs/introduction/
3.​ “Home | Weaviate.” https://weaviate.io/developers/weaviate
4.​ “meta-llama/Llama-3.2-11B-Vision-Instruct · Hugging Face,” Dec. 06, 2024.

https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
5.​ “Model - OpenAI API.” https://platform.openai.com/docs/models/gpt-4o
6.​ “JetStream2 Documentation.” https://docs.jetstream-cloud.org/
7.​ “Streamlit Docs,” Sep. 10, 2024. https://docs.streamlit.io/

	INFO - 698
	Capstone Project
	Dr Greg Chism, Dr Enrique Noriega
	PubMed Agentic Retrieval-Augmented Generation
	Project Final Report
	PubMed Agentic Retrieval-Augmented Generation

